https://doi.org/10.37208/tgn28304

The elusive green alga *Catena viridis* Chodat: a possible second record for the British Isles from Scotland

J. Krokowski^{1*}, D.M. John², E. Mullen¹ & M. Lau¹

¹Scottish Environment Protection Agency, ASB Maxim 6, Eurocentral, Holytown, North Lanarkshire ML1 4WQ ²Science Group, Natural History Museum, Cromwell Road, London SW7 5BD

*E-mail: jan.krokowski@sepa.org.uk

This note concerns an unusual algal specimen that was recorded in a sample collected from Loch Ore, Fife, Scotland on 14th August 2024, during a routine phytoplankton analysis carried out as part of the Scottish Environment Protection Agency's (SEPA) monitoring of the ecological status of freshwater lochs using phytoplankton. The open-water sample had been collected using a throw sampler from the shore at the north-eastern edge of the loch at the yacht jetty near the outlet, and immediately preserved with Lugol's solution. Loch Ore is a large (surface area 0.85 km², volume 4.47×10^6 m³), shallow (mean depth 5.3 m), high alkalinity (mean alkalinity 1,788 μEq L⁻¹, mean colour 29.3 mgPt L⁻¹) freshwater loch. Its catchment area (24.32 km²) is coniferous woodland (33%), improved grassland (23%), arable horticulture (12%) and broadleaved woodland (8%). The overall ecological status of the loch is currently classified as "Moderate", while the phytoplankton has reached "High" ecological status (SEPA, 2025) and has been usually dominated by diatoms (Cyclotella spp. and Acanthoceras zachariasi), cryptophytes (Cryptomonas spp.) and chlorophytes (Pediastrum spp. and Pandorina morum) over 2022-2024 (data from months of July to September only).

No live sample could be taken and used for examination. Photographs taken from the sample at $\times 1,600$ magnification (oil immersion) highlighted cells 4-5 μ m long by 1.0-1.5 μ m wide, bar-bell-like with thickened caps at either end (Fig. 1). Cells were relatively abundant at 4,953 cells ml⁻¹ with calculated biomass of 5,312 μ m³ ml⁻¹. These cells in the preserved sample from Loch Ore show a close resemblance to *Catena viridis* (Chodat, 1900), a green alga belonging to the Chlorellales (Trebouxiophyceae) as indicated by its morphology and size and based on detailed descriptions in authoritative sources: Bourrelly (1990), Tikkanen (1986) and Hindák (1978).

Bourrelly (1990) mentions *C. viridis* as being known only from Denmark, Sweden and France, with each end of the cylindrical cells widening into projecting edges encrusted with brown ferric salts, and with four or eight

Fig. 1. Cells from Loch Ore (August 2024). Scalebar = $10 \mu m$.

of these cells forming short, straight or tortuous filaments. Guiry & Guiry (2024) state that this plankton alga is found in various freshwater habitats in central Europe as well as in Côte d'Ivoire in West Africa. John et al. (2011) quoted the comments of Williams (1941) concerning his record of C. viridis from the River Dee (near Chester, Cheshire, England) that the ring-like thickening was sometimes broken into granules. These observations were in error, since Williams (1965) subsequently corrected his identification "Amphikrikos minutissima" (sic) (= A. minutissimus, a new species and genus described by Korshikov in 1953). John et al. (2011) describe C. viridis as having cylindrical cells, 3-4 µm wide, one to two times longer than broad, with ends often encircled by unequal caps or rings.

There is only a superficial resemblance between the rare chlorococcal alga A. minutissimus and the specimens from Loch Ore. The most recent morphological description taxonomic comments A. minutissimus refer to samples from Slovakia (Hindák & Hindáková, 2008). These authors described A. minutissimus as follows: "Cells solitary or arranged in 4-8 celled autosporangia, with indistinct hyaline mucilaginous envelopes. Cells were short cylindrical to cylindrical-oval, $5-7 \times 2-3.5 \mu \text{m...}$ with a ring of irregular granules at both poles". Hindák & Hindáková (2008) also discuss the placement of A. minutissimus in the family Oocystaceae (order Chlorellales) based on the presence of autosporangia. In contrast, C. viridis reproduces only by transverse cell division and is now placed in the family Chlorellaceae (order Chlorellales) based on the findings of an 18s RNA investigation (Krienitz et al., 2003).

An examination of detailed illustrations of both *C. viridis* and *A. minutissimus* from the unique Fritsch Collection, a detailed herbarium of millions of algal illustrations dating from 1912, also enabled comparison of the Loch Ore sample with different authors' interpretation of these two taxa. The cells of the Loch Ore sample more closely correspond to the illustrations of *C. viridis*, although these were not observed forming short chains, which possibly reflects the treatment of the sample after collection. As it was not possible to take a live sample from Loch Ore in August 2024, other aids to identification - the original colour of the cells and the nature of the chloroplast – remain unknown. The record of *C. viridis* therefore remains inconclusive.

Allan Pentecost (pers. comm.) suggested adding dilute acid to the sample to determine if the objects remained - indicating they are algal, or if they completely dissolved - suggesting they were not algal but mineral. The addition of dilute hydrochloric acid resulted in the apical thickened caps dissolving but leaving the cells unaffected and intact (Fig. 2). All other algal cells remained unaffected and intact in the sample after the addition of acid. This further strengthens the case for these cells being attributed to the green alga *C. viridis*.

If the Loch Ore sample proved to be *C. viridis*, then it would be only the second time this species has been recorded from the British Isles, now that the original report of it from the River Dee is known to be erroneous (Williams, 1965). The only other record is the mention by Pentecost & Haworth (2021) that it was recorded by John Lund in 1996 from Priest Pot in a list of the freshwater algae of Cumbria that includes the English Lake District.

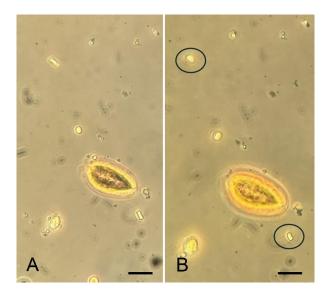


Fig. 2. Cells from Loch Ore (August 2024). (A) Prior to addition of dilute hydrochloric acid, showing thickened caps containing brown ferric salts. (B) Immediately after addition of dilute hydrochloric acid showing intact cells (encircled) and dissolved caps. Scalebars = $20 \mu m$.

In conclusion, the cells observed in the sample collected from Loch Ore in August 2024 are very likely those of the rare green alga C. viridis, only the second time it has been recorded from the British Isles. Further collections subsequently material preserved glutaraldehyde or formalin are needed for confirmation. The authors thank the large number of algologists in the U.K. and further afield who provided valuable comments on JK's initial query about this specimen: Bill Brierley, Laurence Carvalho, Marko Järvinen, David M. John, Martyn Kelly, Sarah Pritchard, Kristiina Vuorio, and Allan Pentecost. Special thanks go to Joanna Wilbraham and Robert Mrowicki at the Natural History Museum (London) who copied relevant sheets from the Fritsch Collection of Algal Illustrations. Thanks are also due to two anonymous reviewers who provided very helpful comments on this note.

REFERENCES

- Bourrelly, P. (1990). Les Algues D'eau Douce. Initiation à la Systématique. Tome 1: Les Algues Vertes. Lubrecht & Cramer Ltd., Paris.
- Chodat, R. (1900). Sur trois genres nouveaux de Protococcoidées et sur la florule planktonique d'un Étang du Danemark. *Mémoires de l'Herbier Boissier* 8, 1-10.
- Guiry, M.D. & Guiry, G.M. (2024). AlgaeBase. https://www.algaebase.org/search/species/detail/?species_id=34785 Accessed 23rd September 2024.
- Hindák, F. (1978). Sladkovodné Riasy. SPN, Bratislava. Hindák, F. & Hindáková, A. (2008). Morphology and taxonomy of some rare chlorococcalean algae (Chlorophyta). Biologia, Bratislava 63, 781-790.
- John, D.M., Whitton, B.A. & Brook, A.J. (2011). *The Freshwater Algal Flora of the British Isles*. Cambridge University Press, Cambridge.
- Korshikov, A.A. (1953). Viznachnik Prisnovodnihk Vodorostey Ukrainsykoi RSR. Pidklas Protokokovi (Protococcineae). Bakuol'ni (Vacuolales) ta Protokokovi (Protococcales). Vol. 5. Akademyy Nauk Ukrayins'koy RSR, Kyiv.
- Krienitz, L., Hegewald, E., Hepperle, D. & Wolf, M. (2003). The systematics of coccoid green algae: 18S rRNA gene sequence data versus morphology. *Biologia, Bratislava* 58, 437-446.
- Pentecost, A. & Haworth, E. (2021). Freshwater Algae of Cumbria Including the Lake District National Park. Freshwater Biological Association Scientific Publication No. 72. Freshwater Biological Association, Ambleside.
- SEPA (2025). Water Classification Hub. https://informatics.sepa.org.uk/WaterClassification Hub/ Accessed 3rd January 2025.
- Tikkanen, T. (1986). Kasviplanktonopas. Suomen Luonnonsuojelun Tuki Oy, Finland.
- Williams, E.G. (1941). Two plankton algae of the Chester District. *Northwestern Naturalist* 16, 162-164.
 - Williams, E.G. (1965). Plankton algae from the Serpentine in Eaton Park, Chester. *British Phycological Bulletin* 2, 429-450.